![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zfcndac | Unicode version |
Description: Axiom of Choice ax-ac 8860, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
zfcndac |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axacnd 9011 | . . 3 | |
2 | 19.3v 1755 | . . . . . 6 | |
3 | 2 | imbi1i 325 | . . . . 5 |
4 | 3 | 2albii 1641 | . . . 4 |
5 | 4 | exbii 1667 | . . 3 |
6 | 1, 5 | mpbi 208 | . 2 |
7 | equequ2 1799 | . . . . . . . . . 10 | |
8 | 7 | bibi2d 318 | . . . . . . . . 9 |
9 | elequ2 1823 | . . . . . . . . . . . . 13 | |
10 | 9 | anbi2d 703 | . . . . . . . . . . . 12 |
11 | elequ2 1823 | . . . . . . . . . . . . 13 | |
12 | elequ1 1821 | . . . . . . . . . . . . 13 | |
13 | 11, 12 | anbi12d 710 | . . . . . . . . . . . 12 |
14 | 10, 13 | anbi12d 710 | . . . . . . . . . . 11 |
15 | 14 | cbvexv 2024 | . . . . . . . . . 10 |
16 | 15 | bibi1i 314 | . . . . . . . . 9 |
17 | 8, 16 | syl6bb 261 | . . . . . . . 8 |
18 | 17 | albidv 1713 | . . . . . . 7 |
19 | elequ1 1821 | . . . . . . . . . . . 12 | |
20 | 19 | anbi1d 704 | . . . . . . . . . . 11 |
21 | elequ1 1821 | . . . . . . . . . . . 12 | |
22 | 21 | anbi1d 704 | . . . . . . . . . . 11 |
23 | 20, 22 | anbi12d 710 | . . . . . . . . . 10 |
24 | 23 | exbidv 1714 | . . . . . . . . 9 |
25 | equequ1 1798 | . . . . . . . . 9 | |
26 | 24, 25 | bibi12d 321 | . . . . . . . 8 |
27 | 26 | cbvalv 2023 | . . . . . . 7 |
28 | 18, 27 | syl6bb 261 | . . . . . 6 |
29 | 28 | cbvexv 2024 | . . . . 5 |
30 | 29 | imbi2i 312 | . . . 4 |
31 | 30 | 2albii 1641 | . . 3 |
32 | 31 | exbii 1667 | . 2 |
33 | 6, 32 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-reg 8039 ax-ac 8860 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-eprel 4796 df-fr 4843 |
Copyright terms: Public domain | W3C validator |