![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zfcndext | Unicode version |
Description: Axiom of Extensionality ax-ext 2435, reproved from conditionless ZFC version and predicate calculus. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
zfcndext |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axextnd 8987 | . 2 | |
2 | 1 | 19.36iv 1763 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
A. wal 1393 = wceq 1395 e. wcel 1818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |