![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zfcndinf | Unicode version |
Description: Axiom of Infinity ax-inf 8076, reproved from conditionless ZFC axioms. Since we have already reproved Extensionality, Replacement, and Power Sets above, we are justified in referencing theorem el 4634 in the proof. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 15-Aug-2003.) |
Ref | Expression |
---|---|
zfcndinf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el 4634 | . . 3 | |
2 | nfv 1707 | . . . . . 6 | |
3 | nfe1 1840 | . . . . . . . 8 | |
4 | 2, 3 | nfim 1920 | . . . . . . 7 |
5 | 4 | nfal 1947 | . . . . . 6 |
6 | 2, 5 | nfan 1928 | . . . . 5 |
7 | 6 | nfex 1948 | . . . 4 |
8 | axinfnd 9005 | . . . . 5 | |
9 | 8 | 19.37iv 1769 | . . . 4 |
10 | 7, 9 | exlimi 1912 | . . 3 |
11 | 1, 10 | ax-mp 5 | . 2 |
12 | elequ1 1821 | . . . . . 6 | |
13 | elequ1 1821 | . . . . . . . 8 | |
14 | 13 | anbi1d 704 | . . . . . . 7 |
15 | 14 | exbidv 1714 | . . . . . 6 |
16 | 12, 15 | imbi12d 320 | . . . . 5 |
17 | 16 | cbvalv 2023 | . . . 4 |
18 | 17 | anbi2i 694 | . . 3 |
19 | 18 | exbii 1667 | . 2 |
20 | 11, 19 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 = wceq 1395 E. wex 1612
e. wcel 1818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-reg 8039 ax-inf 8076 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-un 3480 df-nul 3785 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |