![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zfcndrep | Unicode version |
Description: Axiom of Replacement ax-rep 4563, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
zfcndrep |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 1840 | . . . . . 6 | |
2 | nfv 1707 | . . . . . . . 8 | |
3 | nfv 1707 | . . . . . . . . . 10 | |
4 | nfa1 1897 | . . . . . . . . . 10 | |
5 | 3, 4 | nfan 1928 | . . . . . . . . 9 |
6 | 5 | nfex 1948 | . . . . . . . 8 |
7 | 2, 6 | nfbi 1934 | . . . . . . 7 |
8 | 7 | nfal 1947 | . . . . . 6 |
9 | 1, 8 | nfim 1920 | . . . . 5 |
10 | 9 | nfex 1948 | . . . 4 |
11 | elequ2 1823 | . . . . . . . . . 10 | |
12 | 11 | anbi1d 704 | . . . . . . . . 9 |
13 | 12 | exbidv 1714 | . . . . . . . 8 |
14 | 13 | bibi2d 318 | . . . . . . 7 |
15 | 14 | albidv 1713 | . . . . . 6 |
16 | 15 | imbi2d 316 | . . . . 5 |
17 | 16 | exbidv 1714 | . . . 4 |
18 | axrepnd 8990 | . . . . 5 | |
19 | 19.3v 1755 | . . . . . . . . 9 | |
20 | 19.3v 1755 | . . . . . . . . . . 11 | |
21 | 20 | anbi1i 695 | . . . . . . . . . 10 |
22 | 21 | exbii 1667 | . . . . . . . . 9 |
23 | 19, 22 | bibi12i 315 | . . . . . . . 8 |
24 | 23 | albii 1640 | . . . . . . 7 |
25 | 24 | imbi2i 312 | . . . . . 6 |
26 | 25 | exbii 1667 | . . . . 5 |
27 | 18, 26 | mpbi 208 | . . . 4 |
28 | 10, 17, 27 | chvar 2013 | . . 3 |
29 | 28 | 19.35i 1689 | . 2 |
30 | nfv 1707 | . . . . 5 | |
31 | nfe1 1840 | . . . . 5 | |
32 | 30, 31 | nfbi 1934 | . . . 4 |
33 | 32 | nfal 1947 | . . 3 |
34 | elequ2 1823 | . . . . 5 | |
35 | nfa1 1897 | . . . . . . . . 9 | |
36 | 35 | 19.3 1888 | . . . . . . . 8 |
37 | 36 | anbi2i 694 | . . . . . . 7 |
38 | 37 | exbii 1667 | . . . . . 6 |
39 | 38 | a1i 11 | . . . . 5 |
40 | 34, 39 | bibi12d 321 | . . . 4 |
41 | 40 | albidv 1713 | . . 3 |
42 | 8, 33, 41 | cbvex 2022 | . 2 |
43 | 29, 42 | sylib 196 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-reg 8039 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-un 3480 df-nul 3785 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |