![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zfinf | Unicode version |
Description: Axiom of Infinity expressed with the fewest number of different variables. (New usage is discouraged.) (Contributed by NM, 14-Aug-2003.) |
Ref | Expression |
---|---|
zfinf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-inf 8076 | . 2 | |
2 | elequ1 1821 | . . . . . 6 | |
3 | elequ1 1821 | . . . . . . . 8 | |
4 | 3 | anbi1d 704 | . . . . . . 7 |
5 | 4 | exbidv 1714 | . . . . . 6 |
6 | 2, 5 | imbi12d 320 | . . . . 5 |
7 | 6 | cbvalv 2023 | . . . 4 |
8 | 7 | anbi2i 694 | . . 3 |
9 | 8 | exbii 1667 | . 2 |
10 | 1, 9 | mpbi 208 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
A. wal 1393 E. wex 1612 |
This theorem is referenced by: axinf2 8078 axinfndlem1 9004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-inf 8076 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |