![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zfnuleu | Unicode version |
Description: Show the uniqueness of the empty set (using the Axiom of Extensionality via bm1.1 2440 to strengthen the hypothesis in the form of axnul 4580). (Contributed by NM, 22-Dec-2007.) |
Ref | Expression |
---|---|
zfnuleu.1 |
Ref | Expression |
---|---|
zfnuleu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfnuleu.1 | . . . 4 | |
2 | nbfal 1406 | . . . . . 6 | |
3 | 2 | albii 1640 | . . . . 5 |
4 | 3 | exbii 1667 | . . . 4 |
5 | 1, 4 | mpbi 208 | . . 3 |
6 | nfv 1707 | . . . 4 | |
7 | 6 | bm1.1 2440 | . . 3 |
8 | 5, 7 | ax-mp 5 | . 2 |
9 | 3 | eubii 2306 | . 2 |
10 | 8, 9 | mpbir 209 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
A. wal 1393 wfal 1400 E. wex 1612 E! weu 2282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 |
Copyright terms: Public domain | W3C validator |