![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zfrepclf | Unicode version |
Description: An inference rule based on the Axiom of Replacement. Typically, defines a function from to . (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
zfrepclf.1 | |
zfrepclf.2 | |
zfrepclf.3 |
Ref | Expression |
---|---|
zfrepclf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfrepclf.2 | . 2 | |
2 | zfrepclf.1 | . . . . . 6 | |
3 | 2 | nfeq2 2636 | . . . . 5 |
4 | eleq2 2530 | . . . . . 6 | |
5 | zfrepclf.3 | . . . . . 6 | |
6 | 4, 5 | syl6bi 228 | . . . . 5 |
7 | 3, 6 | alrimi 1877 | . . . 4 |
8 | nfv 1707 | . . . . 5 | |
9 | 8 | axrep5 4568 | . . . 4 |
10 | 7, 9 | syl 16 | . . 3 |
11 | 4 | anbi1d 704 | . . . . . . 7 |
12 | 3, 11 | exbid 1886 | . . . . . 6 |
13 | 12 | bibi2d 318 | . . . . 5 |
14 | 13 | albidv 1713 | . . . 4 |
15 | 14 | exbidv 1714 | . . 3 |
16 | 10, 15 | mpbid 210 | . 2 |
17 | 1, 16 | vtocle 3183 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 F/_ wnfc 2605
cvv 3109 |
This theorem is referenced by: zfrep3cl 4570 zfrep4 4571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |