![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zindd | Unicode version |
Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
zindd.1 | |
zindd.2 | |
zindd.3 | |
zindd.4 | |
zindd.5 | |
zindd.6 | |
zindd.7 | |
zindd.8 |
Ref | Expression |
---|---|
zindd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znegcl 10924 | . . . . . . 7 | |
2 | elznn0nn 10903 | . . . . . . 7 | |
3 | 1, 2 | sylib 196 | . . . . . 6 |
4 | simpr 461 | . . . . . . 7 | |
5 | 4 | orim2i 518 | . . . . . 6 |
6 | 3, 5 | syl 16 | . . . . 5 |
7 | zcn 10894 | . . . . . . . 8 | |
8 | 7 | negnegd 9945 | . . . . . . 7 |
9 | 8 | eleq1d 2526 | . . . . . 6 |
10 | 9 | orbi2d 701 | . . . . 5 |
11 | 6, 10 | mpbid 210 | . . . 4 |
12 | zindd.1 | . . . . . . . 8 | |
13 | 12 | imbi2d 316 | . . . . . . 7 |
14 | zindd.2 | . . . . . . . 8 | |
15 | 14 | imbi2d 316 | . . . . . . 7 |
16 | zindd.3 | . . . . . . . 8 | |
17 | 16 | imbi2d 316 | . . . . . . 7 |
18 | zindd.4 | . . . . . . . 8 | |
19 | 18 | imbi2d 316 | . . . . . . 7 |
20 | zindd.6 | . . . . . . 7 | |
21 | zindd.7 | . . . . . . . . 9 | |
22 | 21 | com12 31 | . . . . . . . 8 |
23 | 22 | a2d 26 | . . . . . . 7 |
24 | 13, 15, 17, 19, 20, 23 | nn0ind 10984 | . . . . . 6 |
25 | 24 | com12 31 | . . . . 5 |
26 | nnnn0 10827 | . . . . . . . 8 | |
27 | 13, 15, 17, 15, 20, 23 | nn0ind 10984 | . . . . . . . 8 |
28 | 26, 27 | syl 16 | . . . . . . 7 |
29 | 28 | com12 31 | . . . . . 6 |
30 | zindd.8 | . . . . . 6 | |
31 | 29, 30 | mpdd 40 | . . . . 5 |
32 | 25, 31 | jaod 380 | . . . 4 |
33 | 11, 32 | syl5 32 | . . 3 |
34 | 33 | ralrimiv 2869 | . 2 |
35 | znegcl 10924 | . . . . 5 | |
36 | negeq 9835 | . . . . . . . . 9 | |
37 | zcn 10894 | . . . . . . . . . 10 | |
38 | 37 | negnegd 9945 | . . . . . . . . 9 |
39 | 36, 38 | sylan9eqr 2520 | . . . . . . . 8 |
40 | 39 | eqcomd 2465 | . . . . . . 7 |
41 | 40, 18 | syl 16 | . . . . . 6 |
42 | 41 | bicomd 201 | . . . . 5 |
43 | 35, 42 | rspcdv 3213 | . . . 4 |
44 | 43 | com12 31 | . . 3 |
45 | 44 | ralrimiv 2869 | . 2 |
46 | zindd.5 | . . 3 | |
47 | 46 | rspccv 3207 | . 2 |
48 | 34, 45, 47 | 3syl 20 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 A. wral 2807 (class class class)co 6296
cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 -u cneg 9829 cn 10561 cn0 10820
cz 10889 |
This theorem is referenced by: efexp 13836 pcexp 14383 mulgneg2 16169 mulgass2 17247 cnfldmulg 18450 clmmulg 21593 gxcl 25267 gxcom 25271 gxinv 25272 gxid 25275 gxdi 25298 xrsmulgzz 27666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 |
Copyright terms: Public domain | W3C validator |