![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zmax | Unicode version |
Description: There is a unique largest integer less than or equal to a given real number. (Contributed by NM, 15-Nov-2004.) |
Ref | Expression |
---|---|
zmax |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcl 9905 | . . 3 | |
2 | zmin 11207 | . . 3 | |
3 | 1, 2 | syl 16 | . 2 |
4 | zre 10893 | . . . . . . 7 | |
5 | leneg 10080 | . . . . . . 7 | |
6 | 4, 5 | sylan 471 | . . . . . 6 |
7 | 6 | ancoms 453 | . . . . 5 |
8 | znegcl 10924 | . . . . . . . . . 10 | |
9 | breq1 4455 | . . . . . . . . . . . 12 | |
10 | breq1 4455 | . . . . . . . . . . . 12 | |
11 | 9, 10 | imbi12d 320 | . . . . . . . . . . 11 |
12 | 11 | rspcv 3206 | . . . . . . . . . 10 |
13 | 8, 12 | syl 16 | . . . . . . . . 9 |
14 | zre 10893 | . . . . . . . . . . . . 13 | |
15 | lenegcon1 10081 | . . . . . . . . . . . . . . 15 | |
16 | 15 | adantrr 716 | . . . . . . . . . . . . . 14 |
17 | lenegcon1 10081 | . . . . . . . . . . . . . . . 16 | |
18 | 4, 17 | sylan2 474 | . . . . . . . . . . . . . . 15 |
19 | 18 | adantrl 715 | . . . . . . . . . . . . . 14 |
20 | 16, 19 | imbi12d 320 | . . . . . . . . . . . . 13 |
21 | 14, 20 | sylan 471 | . . . . . . . . . . . 12 |
22 | 21 | biimpd 207 | . . . . . . . . . . 11 |
23 | 22 | ex 434 | . . . . . . . . . 10 |
24 | 23 | com23 78 | . . . . . . . . 9 |
25 | 13, 24 | syld 44 | . . . . . . . 8 |
26 | 25 | com13 80 | . . . . . . 7 |
27 | 26 | ralrimdv 2873 | . . . . . 6 |
28 | znegcl 10924 | . . . . . . . . . 10 | |
29 | breq2 4456 | . . . . . . . . . . . 12 | |
30 | breq2 4456 | . . . . . . . . . . . 12 | |
31 | 29, 30 | imbi12d 320 | . . . . . . . . . . 11 |
32 | 31 | rspcv 3206 | . . . . . . . . . 10 |
33 | 28, 32 | syl 16 | . . . . . . . . 9 |
34 | zre 10893 | . . . . . . . . . . . 12 | |
35 | leneg 10080 | . . . . . . . . . . . . . 14 | |
36 | 35 | adantrr 716 | . . . . . . . . . . . . 13 |
37 | leneg 10080 | . . . . . . . . . . . . . . 15 | |
38 | 4, 37 | sylan2 474 | . . . . . . . . . . . . . 14 |
39 | 38 | adantrl 715 | . . . . . . . . . . . . 13 |
40 | 36, 39 | imbi12d 320 | . . . . . . . . . . . 12 |
41 | 34, 40 | sylan 471 | . . . . . . . . . . 11 |
42 | 41 | exbiri 622 | . . . . . . . . . 10 |
43 | 42 | com23 78 | . . . . . . . . 9 |
44 | 33, 43 | syld 44 | . . . . . . . 8 |
45 | 44 | com13 80 | . . . . . . 7 |
46 | 45 | ralrimdv 2873 | . . . . . 6 |
47 | 27, 46 | impbid 191 | . . . . 5 |
48 | 7, 47 | anbi12d 710 | . . . 4 |
49 | 48 | reubidva 3041 | . . 3 |
50 | znegcl 10924 | . . . 4 | |
51 | znegcl 10924 | . . . . 5 | |
52 | zcn 10894 | . . . . . 6 | |
53 | zcn 10894 | . . . . . 6 | |
54 | negcon2 9895 | . . . . . 6 | |
55 | 52, 53, 54 | syl2an 477 | . . . . 5 |
56 | 51, 55 | reuhyp 4680 | . . . 4 |
57 | breq2 4456 | . . . . 5 | |
58 | breq1 4455 | . . . . . . 7 | |
59 | 58 | imbi2d 316 | . . . . . 6 |
60 | 59 | ralbidv 2896 | . . . . 5 |
61 | 57, 60 | anbi12d 710 | . . . 4 |
62 | 50, 56, 61 | reuxfr 4678 | . . 3 |
63 | 49, 62 | syl6rbbr 264 | . 2 |
64 | 3, 63 | mpbid 210 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E! wreu 2809 class class class wbr 4452
cc 9511 cr 9512 cle 9650 -u cneg 9829 cz 10889 |
This theorem is referenced by: flval2 11950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 |
Copyright terms: Public domain | W3C validator |