![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zneo | Unicode version |
Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
Ref | Expression |
---|---|
zneo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfnz 10966 | . . 3 | |
2 | 2cn 10631 | . . . . . . 7 | |
3 | zcn 10894 | . . . . . . . 8 | |
4 | 3 | adantr 465 | . . . . . . 7 |
5 | mulcl 9597 | . . . . . . 7 | |
6 | 2, 4, 5 | sylancr 663 | . . . . . 6 |
7 | zcn 10894 | . . . . . . . 8 | |
8 | 7 | adantl 466 | . . . . . . 7 |
9 | mulcl 9597 | . . . . . . 7 | |
10 | 2, 8, 9 | sylancr 663 | . . . . . 6 |
11 | 1cnd 9633 | . . . . . 6 | |
12 | 6, 10, 11 | subaddd 9972 | . . . . 5 |
13 | 2 | a1i 11 | . . . . . . . . . 10 |
14 | 13, 4, 8 | subdid 10037 | . . . . . . . . 9 |
15 | 14 | oveq1d 6311 | . . . . . . . 8 |
16 | zsubcl 10931 | . . . . . . . . . 10 | |
17 | zcn 10894 | . . . . . . . . . 10 | |
18 | 16, 17 | syl 16 | . . . . . . . . 9 |
19 | 2ne0 10653 | . . . . . . . . . 10 | |
20 | 19 | a1i 11 | . . . . . . . . 9 |
21 | 18, 13, 20 | divcan3d 10350 | . . . . . . . 8 |
22 | 15, 21 | eqtr3d 2500 | . . . . . . 7 |
23 | 22, 16 | eqeltrd 2545 | . . . . . 6 |
24 | oveq1 6303 | . . . . . . 7 | |
25 | 24 | eleq1d 2526 | . . . . . 6 |
26 | 23, 25 | syl5ibcom 220 | . . . . 5 |
27 | 12, 26 | sylbird 235 | . . . 4 |
28 | 27 | necon3bd 2669 | . . 3 |
29 | 1, 28 | mpi 17 | . 2 |
30 | 29 | necomd 2728 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 (class class class)co 6296
cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cmin 9828 cdiv 10231 2 c2 10610 cz 10889 |
This theorem is referenced by: nneo 10971 zeo2 10974 znnenlem 13945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 |
Copyright terms: Public domain | W3C validator |