![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zorn2lem1 | Unicode version |
Description: Lemma for zorn2 8907. (Contributed by NM, 3-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
zorn2lem.3 | |
zorn2lem.4 | |
zorn2lem.5 |
Ref | Expression |
---|---|
zorn2lem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zorn2lem.3 | . . . . 5 | |
2 | 1 | tfr2 7086 | . . . 4 |
3 | 2 | adantr 465 | . . 3 |
4 | 1 | tfr1 7085 | . . . . . 6 |
5 | fnfun 5683 | . . . . . 6 | |
6 | 4, 5 | ax-mp 5 | . . . . 5 |
7 | vex 3112 | . . . . 5 | |
8 | resfunexg 6137 | . . . . 5 | |
9 | 6, 7, 8 | mp2an 672 | . . . 4 |
10 | rneq 5233 | . . . . . . . . . . . 12 | |
11 | df-ima 5017 | . . . . . . . . . . . 12 | |
12 | 10, 11 | syl6eqr 2516 | . . . . . . . . . . 11 |
13 | 12 | eleq2d 2527 | . . . . . . . . . 10 |
14 | 13 | imbi1d 317 | . . . . . . . . 9 |
15 | 14 | ralbidv2 2892 | . . . . . . . 8 |
16 | 15 | rabbidv 3101 | . . . . . . 7 |
17 | zorn2lem.4 | . . . . . . 7 | |
18 | zorn2lem.5 | . . . . . . 7 | |
19 | 16, 17, 18 | 3eqtr4g 2523 | . . . . . 6 |
20 | 19 | eleq2d 2527 | . . . . . . . 8 |
21 | 20 | imbi1d 317 | . . . . . . 7 |
22 | 21 | ralbidv2 2892 | . . . . . 6 |
23 | 19, 22 | riotaeqbidv 6260 | . . . . 5 |
24 | eqid 2457 | . . . . 5 | |
25 | riotaex 6261 | . . . . 5 | |
26 | 23, 24, 25 | fvmpt 5956 | . . . 4 |
27 | 9, 26 | ax-mp 5 | . . 3 |
28 | 3, 27 | syl6eq 2514 | . 2 |
29 | simprl 756 | . . . 4 | |
30 | weso 4875 | . . . . . . 7 | |
31 | 30 | ad2antrl 727 | . . . . . 6 |
32 | vex 3112 | . . . . . 6 | |
33 | soex 6743 | . . . . . 6 | |
34 | 31, 32, 33 | sylancl 662 | . . . . 5 |
35 | 18, 34 | rabexd 4604 | . . . 4 |
36 | ssrab2 3584 | . . . . . 6 | |
37 | 18, 36 | eqsstri 3533 | . . . . 5 |
38 | 37 | a1i 11 | . . . 4 |
39 | simprr 757 | . . . 4 | |
40 | wereu 4880 | . . . 4 | |
41 | 29, 35, 38, 39, 40 | syl13anc 1230 | . . 3 |
42 | riotacl 6272 | . . 3 | |
43 | 41, 42 | syl 16 | . 2 |
44 | 28, 43 | eqeltrd 2545 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 E! wreu 2809
{ crab 2811 cvv 3109
C_ wss 3475 c0 3784 class class class wbr 4452
e. cmpt 4510 Or wor 4804 We wwe 4842
con0 4883 ran crn 5005 |` cres 5006
" cima 5007 Fun wfun 5587 Fn wfn 5588
` cfv 5593 iota_ crio 6256 recs crecs 7060 |
This theorem is referenced by: zorn2lem2 8898 zorn2lem3 8899 zorn2lem4 8900 zorn2lem5 8901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-recs 7061 |
Copyright terms: Public domain | W3C validator |