![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > zorn2lem5 | Unicode version |
Description: Lemma for zorn2 8907. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
zorn2lem.3 | |
zorn2lem.4 | |
zorn2lem.5 | |
zorn2lem.7 |
Ref | Expression |
---|---|
zorn2lem5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zorn2lem.3 | . . . . . 6 | |
2 | 1 | tfr1 7085 | . . . . 5 |
3 | fnfun 5683 | . . . . 5 | |
4 | 2, 3 | ax-mp 5 | . . . 4 |
5 | fvelima 5925 | . . . 4 | |
6 | 4, 5 | mpan 670 | . . 3 |
7 | nfv 1707 | . . . . 5 | |
8 | nfra1 2838 | . . . . 5 | |
9 | 7, 8 | nfan 1928 | . . . 4 |
10 | nfv 1707 | . . . 4 | |
11 | df-ral 2812 | . . . . . 6 | |
12 | onelon 4908 | . . . . . . . . . . . . 13 | |
13 | zorn2lem.7 | . . . . . . . . . . . . . . . 16 | |
14 | ssrab2 3584 | . . . . . . . . . . . . . . . 16 | |
15 | 13, 14 | eqsstri 3533 | . . . . . . . . . . . . . . 15 |
16 | zorn2lem.4 | . . . . . . . . . . . . . . . 16 | |
17 | 1, 16, 13 | zorn2lem1 8897 | . . . . . . . . . . . . . . 15 |
18 | 15, 17 | sseldi 3501 | . . . . . . . . . . . . . 14 |
19 | eleq1 2529 | . . . . . . . . . . . . . 14 | |
20 | 18, 19 | syl5ib 219 | . . . . . . . . . . . . 13 |
21 | 12, 20 | sylani 654 | . . . . . . . . . . . 12 |
22 | 21 | com12 31 | . . . . . . . . . . 11 |
23 | 22 | exp43 612 | . . . . . . . . . 10 |
24 | 23 | com3r 79 | . . . . . . . . 9 |
25 | 24 | imp 429 | . . . . . . . 8 |
26 | 25 | a2d 26 | . . . . . . 7 |
27 | 26 | spsd 1867 | . . . . . 6 |
28 | 11, 27 | syl5bi 217 | . . . . 5 |
29 | 28 | imp 429 | . . . 4 |
30 | 9, 10, 29 | rexlimd 2941 | . . 3 |
31 | 6, 30 | syl5 32 | . 2 |
32 | 31 | ssrdv 3509 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
E. wrex 2808 { crab 2811 cvv 3109
C_ wss 3475 c0 3784 class class class wbr 4452
e. cmpt 4510 We wwe 4842 con0 4883 ran crn 5005 " cima 5007
Fun wfun 5587
Fn wfn 5588 ` cfv 5593 iota_ crio 6256
recs crecs 7060 |
This theorem is referenced by: zorn2lem6 8902 zorn2lem7 8903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-recs 7061 |
Copyright terms: Public domain | W3C validator |