MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorng Unicode version

Theorem zorng 8905
Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of [Enderton] p. 151. This version of zorn 8908 avoids the Axiom of Choice by assuming that is well-orderable. (Contributed by NM, 12-Aug-2004.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
zorng
Distinct variable group:   , , ,

Proof of Theorem zorng
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 risset 2982 . . . . . 6
2 eqimss2 3556 . . . . . . . . 9
3 unissb 4281 . . . . . . . . 9
42, 3sylib 196 . . . . . . . 8
5 vex 3112 . . . . . . . . . . . 12
65brrpss 6583 . . . . . . . . . . 11
76orbi1i 520 . . . . . . . . . 10
8 sspss 3602 . . . . . . . . . 10
97, 8bitr4i 252 . . . . . . . . 9
109ralbii 2888 . . . . . . . 8
114, 10sylibr 212 . . . . . . 7
1211reximi 2925 . . . . . 6
131, 12sylbi 195 . . . . 5
1413imim2i 14 . . . 4
1514alimi 1633 . . 3
16 porpss 6584 . . . 4
17 zorn2g 8904 . . . 4
1816, 17mp3an2 1312 . . 3
1915, 18sylan2 474 . 2
20 vex 3112 . . . . . 6
2120brrpss 6583 . . . . 5
2221notbii 296 . . . 4
2322ralbii 2888 . . 3
2423rexbii 2959 . 2
2519, 24sylib 196 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  \/wo 368  /\wa 369  A.wal 1393  =wceq 1395  e.wcel 1818  A.wral 2807  E.wrex 2808  C_wss 3475  C.wpss 3476  U.cuni 4249   class class class wbr 4452  Powpo 4803  Orwor 4804  domcdm 5004   crpss 6579   ccrd 8337
This theorem is referenced by:  zornn0g  8906  zorn  8908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-int 4287  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-se 4844  df-we 4845  df-ord 4886  df-on 4887  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-isom 5602  df-riota 6257  df-rpss 6580  df-recs 7061  df-en 7537  df-card 8341
  Copyright terms: Public domain W3C validator