MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrei Unicode version

Theorem zrei 10895
Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.)
Hypothesis
Ref Expression
zrei.1
Assertion
Ref Expression
zrei

Proof of Theorem zrei
StepHypRef Expression
1 zrei.1 . 2
2 zre 10893 . 2
31, 2ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  e.wcel 1818   cr 9512   cz 10889
This theorem is referenced by:  dfuzi  10978  eluzaddi  11136  eluzsubi  11137  dvdslelem  14030  divalglem1  14052  divalglem6  14056  divalglem9  14059  gcdaddmlem  14166  basellem9  23362  axlowdimlem16  24260  fdc  30238  jm2.27dlem2  30952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-iota 5556  df-fv 5601  df-ov 6299  df-neg 9831  df-z 10890
  Copyright terms: Public domain W3C validator