MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibd Unicode version

Theorem ibd 243
Description: Deduction that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 26-Jun-2004.)
Hypothesis
Ref Expression
ibd.1
Assertion
Ref Expression
ibd

Proof of Theorem ibd
StepHypRef Expression
1 ibd.1 . 2
2 bi1 186 . 2
31, 2syli 37 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184
This theorem is referenced by:  sssn  4188  unblem2  7793  atcv0eq  27298  atcv1  27299  atomli  27301  atcvatlem  27304  ibdr  30593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator