Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibi | Unicode version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 |
Ref | Expression |
---|---|
ibi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibi.1 | . . 3 | |
2 | 1 | biimpd 207 | . 2 |
3 | 2 | pm2.43i 47 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184 |
This theorem is referenced by: ibir 242 elimh 956 elab3gf 3251 elimhyp 4000 elimhyp2v 4001 elimhyp3v 4002 elimhyp4v 4003 elpwi 4021 elpr2 4048 elpri 4049 elsni 4054 eltpi 4073 snssi 4174 prssi 4186 eloni 4893 limuni2 4944 elxpi 5020 releldmb 5242 relelrnb 5243 funeu 5617 fneu 5690 fvelima 5925 eloprabi 6862 fo2ndf 6907 tfrlem9 7073 oeeulem 7269 elqsi 7384 qsel 7409 ecopovsym 7432 elpmi 7457 elmapi 7460 pmsspw 7473 brdomi 7547 undom 7625 mapdom1 7702 ominf 7752 unblem2 7793 unfilem1 7804 fiin 7902 brwdomi 8015 canthwdom 8026 brwdom3i 8030 unxpwdom 8036 scott0 8325 acni 8447 pwcdadom 8617 fin1ai 8694 fin2i 8696 fin4i 8699 ssfin3ds 8731 fin23lem17 8739 fin23lem38 8750 fin23lem39 8751 isfin32i 8766 fin34 8791 isfin7-2 8797 fin1a2lem13 8813 fin12 8814 gchi 9023 wuntr 9104 wununi 9105 wunpw 9106 wunpr 9108 wun0 9117 tskpwss 9151 tskpw 9152 tsken 9153 grutr 9192 grupw 9194 grupr 9196 gruurn 9197 ingru 9214 indpi 9306 eliooord 11613 fzrev3i 11775 elfzole1 11836 elfzolt2 11837 bcp1nk 12395 rere 12955 nn0abscl 13145 climcl 13322 rlimcl 13326 rlimdm 13374 o1res 13383 rlimdmo1 13440 climcau 13493 caucvgb 13502 fprodcnv 13787 cshws0 14586 restsspw 14829 mreiincl 14993 catidex 15071 catcocl 15082 catass 15083 homa1 15364 homahom2 15365 odulat 15775 dlatjmdi 15827 psrel 15833 psref2 15834 pstr2 15835 reldir 15863 dirdm 15864 dirref 15865 dirtr 15866 dirge 15867 mgmcl 15875 submss 15981 subm0cl 15983 submcl 15984 submmnd 15985 subgsubm 16223 symgbasf1o 16408 symginv 16427 psgneu 16531 odmulg 16578 efgsp1 16755 efgsres 16756 frgpnabl 16879 dprdgrp 17038 dprdf 17039 abvfge0 17471 abveq0 17475 abvmul 17478 abvtri 17479 lbsss 17723 lbssp 17725 lbsind 17726 opsrtoslem2 18149 opsrso 18151 domnchr 18569 cssi 18715 linds1 18845 linds2 18846 lindsind 18852 mdetunilem9 19122 uniopn 19406 iunopn 19407 inopn 19408 fiinopn 19410 eltpsg 19446 basis1 19451 basis2 19452 eltg4i 19461 lmff 19802 t1sep2 19870 cmpfii 19909 ptfinfin 20020 kqhmph 20320 fbasne0 20331 0nelfb 20332 fbsspw 20333 fbasssin 20337 ufli 20415 uffixfr 20424 elfm 20448 fclsopni 20516 fclselbas 20517 ustssxp 20707 ustbasel 20709 ustincl 20710 ustdiag 20711 ustinvel 20712 ustexhalf 20713 ustfilxp 20715 ustbas2 20728 ustbas 20730 psmetf 20810 psmet0 20812 psmettri2 20813 metflem 20831 xmetf 20832 xmeteq0 20841 xmettri2 20843 tmsxms 20989 tmsms 20990 metustsymOLD 21064 metustsym 21065 tngnrg 21183 cncff 21397 cncfi 21398 cfili 21707 iscmet3lem2 21731 mbfres 22051 mbfimaopnlem 22062 limcresi 22289 dvcnp2 22323 ulmcl 22776 ulmf 22777 ulmcau 22790 pserulm 22817 pserdvlem2 22823 sinq34lt0t 22902 logtayl 23041 dchrmhm 23516 lgsdir2lem2 23599 2sqlem9 23648 mulog2sum 23722 eleei 24200 uhgraf 24299 ushgraf 24302 umgraf2 24317 uslgraf 24345 usgraf 24346 usgraf0 24348 clwwisshclww 24807 frisusgrapr 24991 tncp 25180 grpofo 25201 grpolidinv 25203 grpoass 25205 opidonOLD 25324 isexid2 25327 nvvop 25502 phpar 25739 pjch1 26588 toslub 27656 tosglb 27658 orngsqr 27794 zhmnrg 27948 issgon 28123 measfrge0 28174 measvnul 28177 measvun 28180 fzssfzo 28490 mfsdisj 28910 mtyf2 28911 maxsta 28914 mvtinf 28915 elpredim 29256 orderseqlem 29332 hfun 29835 hfsn 29836 hfelhf 29838 hfuni 29841 hfpw 29842 fneuni 30165 heibor1lem 30305 heiborlem1 30307 heiborlem3 30309 lnrfg 31068 stoweidlem35 31817 afvelrnb0 32249 afvelima 32252 rlimdmafv 32262 uhgf 32368 submgmss 32480 submgmcl 32482 submgmmgm 32483 asslawass 32517 linindsi 33048 trintALTVD 33680 trintALT 33681 bnj916 33991 bnj983 34009 bj-elimhyp 34160 bj-elid 34599 elpcliN 35617 pwinfi2 37747 frege55lem1c 37943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |