Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibir | Unicode version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
ibir.1 |
Ref | Expression |
---|---|
ibir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibir.1 | . . 3 | |
2 | 1 | bicomd 201 | . 2 |
3 | 2 | ibi 241 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184 |
This theorem is referenced by: elpr2 4048 eusv2i 4649 ffdm 5750 ov 6422 ovg 6441 oacl 7204 nnacl 7279 elpm2r 7456 cdaxpdom 8590 cdafi 8591 cfcof 8675 hargch 9072 uzaddcl 11166 expcllem 12177 mreunirn 14998 filunirn 20383 ustelimasn 20725 metustfbasOLD 21068 metustfbas 21069 pjini 26617 fzspl 27598 xrge0tsmsbi 27776 ac6s6 30580 fouriersw 32014 etransclem25 32042 uzlidlring 32735 linccl 33015 bnj983 34009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |