MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ibir Unicode version

Theorem ibir 242
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1
Assertion
Ref Expression
ibir

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3
21bicomd 201 . 2
32ibi 241 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184
This theorem is referenced by:  elpr2  4048  eusv2i  4649  ffdm  5750  ov  6422  ovg  6441  oacl  7204  nnacl  7279  elpm2r  7456  cdaxpdom  8590  cdafi  8591  cfcof  8675  hargch  9072  uzaddcl  11166  expcllem  12177  mreunirn  14998  filunirn  20383  ustelimasn  20725  metustfbasOLD  21068  metustfbas  21069  pjini  26617  fzspl  27598  xrge0tsmsbi  27776  ac6s6  30580  fouriersw  32014  etransclem25  32042  uzlidlring  32735  linccl  33015  bnj983  34009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator