MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccf Unicode version

Theorem iccf 11652
Description: The set of closed intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
iccf

Proof of Theorem iccf
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-icc 11565 . 2
21ixxf 11568 1
Colors of variables: wff setvar class
Syntax hints:  ~Pcpw 4012  X.cxp 5002  -->wf 5589   cxr 9648   cle 9650   cicc 11561
This theorem is referenced by:  lecldbas  19720  ovolficc  21880  ovolficcss  21881  uniiccdif  21987  uniiccvol  21989  dyadmbllem  22008  dyadmbl  22009  opnmbllem  22010  opnmbllem0  30050  mblfinlem1  30051  mblfinlem2  30052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-cnex 9569  ax-resscn 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-fv 5601  df-oprab 6300  df-mpt2 6301  df-1st 6800  df-2nd 6801  df-xr 9653  df-icc 11565
  Copyright terms: Public domain W3C validator