Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccf1o | Unicode version |
Description: Describe a bijection from
[ 0 , 1 ] to an arbitrary nontrivial
closed interval [ A , ] . (Contributed
by Mario Carneiro,
8-Sep-2015.) |
Ref | Expression |
---|---|
iccf1o.1 |
Ref | Expression |
---|---|
iccf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccf1o.1 | . 2 | |
2 | 0re 9617 | . . . . . . . . 9 | |
3 | 1re 9616 | . . . . . . . . 9 | |
4 | 2, 3 | elicc2i 11619 | . . . . . . . 8 |
5 | 4 | simp1bi 1011 | . . . . . . 7 |
6 | 5 | adantl 466 | . . . . . 6 |
7 | 6 | recnd 9643 | . . . . 5 |
8 | simpl2 1000 | . . . . . 6 | |
9 | 8 | recnd 9643 | . . . . 5 |
10 | 7, 9 | mulcld 9637 | . . . 4 |
11 | ax-1cn 9571 | . . . . . 6 | |
12 | subcl 9842 | . . . . . 6 | |
13 | 11, 7, 12 | sylancr 663 | . . . . 5 |
14 | simpl1 999 | . . . . . 6 | |
15 | 14 | recnd 9643 | . . . . 5 |
16 | 13, 15 | mulcld 9637 | . . . 4 |
17 | 10, 16 | addcomd 9803 | . . 3 |
18 | lincmb01cmp 11692 | . . 3 | |
19 | 17, 18 | eqeltrd 2545 | . 2 |
20 | simpr 461 | . . . . 5 | |
21 | simpl1 999 | . . . . . 6 | |
22 | simpl2 1000 | . . . . . 6 | |
23 | elicc2 11618 | . . . . . . . . 9 | |
24 | 23 | 3adant3 1016 | . . . . . . . 8 |
25 | 24 | biimpa 484 | . . . . . . 7 |
26 | 25 | simp1d 1008 | . . . . . 6 |
27 | eqid 2457 | . . . . . . 7 | |
28 | eqid 2457 | . . . . . . 7 | |
29 | 27, 28 | iccshftl 11685 | . . . . . 6 |
30 | 21, 22, 26, 21, 29 | syl22anc 1229 | . . . . 5 |
31 | 20, 30 | mpbid 210 | . . . 4 |
32 | 26, 21 | resubcld 10012 | . . . . . 6 |
33 | 32 | recnd 9643 | . . . . 5 |
34 | difrp 11282 | . . . . . . . 8 | |
35 | 34 | biimp3a 1328 | . . . . . . 7 |
36 | 35 | adantr 465 | . . . . . 6 |
37 | 36 | rpcnd 11287 | . . . . 5 |
38 | 36 | rpne0d 11290 | . . . . 5 |
39 | 33, 37, 38 | divcan1d 10346 | . . . 4 |
40 | 37 | mul02d 9799 | . . . . . 6 |
41 | 21 | recnd 9643 | . . . . . . 7 |
42 | 41 | subidd 9942 | . . . . . 6 |
43 | 40, 42 | eqtr4d 2501 | . . . . 5 |
44 | 37 | mulid2d 9635 | . . . . 5 |
45 | 43, 44 | oveq12d 6314 | . . . 4 |
46 | 31, 39, 45 | 3eltr4d 2560 | . . 3 |
47 | 0red 9618 | . . . 4 | |
48 | 1red 9632 | . . . 4 | |
49 | 32, 36 | rerpdivcld 11312 | . . . 4 |
50 | eqid 2457 | . . . . 5 | |
51 | eqid 2457 | . . . . 5 | |
52 | 50, 51 | iccdil 11687 | . . . 4 |
53 | 47, 48, 49, 36, 52 | syl22anc 1229 | . . 3 |
54 | 46, 53 | mpbird 232 | . 2 |
55 | eqcom 2466 | . . . 4 | |
56 | 33 | adantrl 715 | . . . . 5 |
57 | 7 | adantrr 716 | . . . . 5 |
58 | 37 | adantrl 715 | . . . . 5 |
59 | 38 | adantrl 715 | . . . . 5 |
60 | 56, 57, 58, 59 | divmul3d 10379 | . . . 4 |
61 | 55, 60 | syl5bb 257 | . . 3 |
62 | 26 | adantrl 715 | . . . . . 6 |
63 | 62 | recnd 9643 | . . . . 5 |
64 | 41 | adantrl 715 | . . . . 5 |
65 | 8, 14 | resubcld 10012 | . . . . . . . 8 |
66 | 6, 65 | remulcld 9645 | . . . . . . 7 |
67 | 66 | adantrr 716 | . . . . . 6 |
68 | 67 | recnd 9643 | . . . . 5 |
69 | 63, 64, 68 | subadd2d 9973 | . . . 4 |
70 | eqcom 2466 | . . . 4 | |
71 | 69, 70 | syl6bb 261 | . . 3 |
72 | 7, 15 | mulcld 9637 | . . . . . . 7 |
73 | 10, 72, 15 | subadd23d 9976 | . . . . . 6 |
74 | 7, 9, 15 | subdid 10037 | . . . . . . 7 |
75 | 74 | oveq1d 6311 | . . . . . 6 |
76 | 1cnd 9633 | . . . . . . . . 9 | |
77 | 76, 7, 15 | subdird 10038 | . . . . . . . 8 |
78 | 15 | mulid2d 9635 | . . . . . . . . 9 |
79 | 78 | oveq1d 6311 | . . . . . . . 8 |
80 | 77, 79 | eqtrd 2498 | . . . . . . 7 |
81 | 80 | oveq2d 6312 | . . . . . 6 |
82 | 73, 75, 81 | 3eqtr4d 2508 | . . . . 5 |
83 | 82 | adantrr 716 | . . . 4 |
84 | 83 | eqeq2d 2471 | . . 3 |
85 | 61, 71, 84 | 3bitrd 279 | . 2 |
86 | 1, 19, 54, 85 | f1ocnv2d 6526 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 class class class wbr 4452
e. cmpt 4510 `' ccnv 5003 -1-1-onto-> wf1o 5592 (class class class)co 6296
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 clt 9649 cle 9650 cmin 9828 cdiv 10231 crp 11249
cicc 11561 |
This theorem is referenced by: iccen 11694 icchmeo 21441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-rp 11250 df-icc 11565 |
Copyright terms: Public domain | W3C validator |