Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccsplit | Unicode version |
Description: Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
iccsplit |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr1 1038 | . . . . . . . . 9 | |
2 | simplr2 1039 | . . . . . . . . 9 | |
3 | simpr1 1002 | . . . . . . . . . . 11 | |
4 | iccssre 11635 | . . . . . . . . . . . . . 14 | |
5 | 4 | sseld 3502 | . . . . . . . . . . . . 13 |
6 | 5 | 3impia 1193 | . . . . . . . . . . . 12 |
7 | 6 | adantr 465 | . . . . . . . . . . 11 |
8 | ltle 9694 | . . . . . . . . . . 11 | |
9 | 3, 7, 8 | syl2anc 661 | . . . . . . . . . 10 |
10 | 9 | imp 429 | . . . . . . . . 9 |
11 | 1, 2, 10 | 3jca 1176 | . . . . . . . 8 |
12 | 11 | orcd 392 | . . . . . . 7 |
13 | simplr1 1038 | . . . . . . . . 9 | |
14 | simpr 461 | . . . . . . . . 9 | |
15 | simplr3 1040 | . . . . . . . . 9 | |
16 | 13, 14, 15 | 3jca 1176 | . . . . . . . 8 |
17 | 16 | olcd 393 | . . . . . . 7 |
18 | 12, 17, 3, 7 | ltlecasei 9713 | . . . . . 6 |
19 | 18 | ex 434 | . . . . 5 |
20 | simp1 996 | . . . . . . . 8 | |
21 | 20 | a1i 11 | . . . . . . 7 |
22 | simp2 997 | . . . . . . . 8 | |
23 | 22 | a1i 11 | . . . . . . 7 |
24 | elicc2 11618 | . . . . . . . . 9 | |
25 | 20 | 3ad2ant3 1019 | . . . . . . . . . . 11 |
26 | simp1 996 | . . . . . . . . . . . 12 | |
27 | 26 | 3ad2ant2 1018 | . . . . . . . . . . 11 |
28 | simp1r 1021 | . . . . . . . . . . 11 | |
29 | simp3 998 | . . . . . . . . . . . 12 | |
30 | 29 | 3ad2ant3 1019 | . . . . . . . . . . 11 |
31 | simp3 998 | . . . . . . . . . . . 12 | |
32 | 31 | 3ad2ant2 1018 | . . . . . . . . . . 11 |
33 | 25, 27, 28, 30, 32 | letrd 9760 | . . . . . . . . . 10 |
34 | 33 | 3exp 1195 | . . . . . . . . 9 |
35 | 24, 34 | sylbid 215 | . . . . . . . 8 |
36 | 35 | 3impia 1193 | . . . . . . 7 |
37 | 21, 23, 36 | 3jcad 1177 | . . . . . 6 |
38 | simp1 996 | . . . . . . . 8 | |
39 | 38 | a1i 11 | . . . . . . 7 |
40 | simp1l 1020 | . . . . . . . . . . 11 | |
41 | 26 | 3ad2ant2 1018 | . . . . . . . . . . 11 |
42 | 38 | 3ad2ant3 1019 | . . . . . . . . . . 11 |
43 | simp2 997 | . . . . . . . . . . . 12 | |
44 | 43 | 3ad2ant2 1018 | . . . . . . . . . . 11 |
45 | simp2 997 | . . . . . . . . . . . 12 | |
46 | 45 | 3ad2ant3 1019 | . . . . . . . . . . 11 |
47 | 40, 41, 42, 44, 46 | letrd 9760 | . . . . . . . . . 10 |
48 | 47 | 3exp 1195 | . . . . . . . . 9 |
49 | 24, 48 | sylbid 215 | . . . . . . . 8 |
50 | 49 | 3impia 1193 | . . . . . . 7 |
51 | simp3 998 | . . . . . . . 8 | |
52 | 51 | a1i 11 | . . . . . . 7 |
53 | 39, 50, 52 | 3jcad 1177 | . . . . . 6 |
54 | 37, 53 | jaod 380 | . . . . 5 |
55 | 19, 54 | impbid 191 | . . . 4 |
56 | elicc2 11618 | . . . . 5 | |
57 | 56 | 3adant3 1016 | . . . 4 |
58 | 5 | imdistani 690 | . . . . . 6 |
59 | 58 | 3impa 1191 | . . . . 5 |
60 | elicc2 11618 | . . . . . . 7 | |
61 | 60 | adantlr 714 | . . . . . 6 |
62 | elicc2 11618 | . . . . . . . 8 | |
63 | 62 | ancoms 453 | . . . . . . 7 |
64 | 63 | adantll 713 | . . . . . 6 |
65 | 61, 64 | orbi12d 709 | . . . . 5 |
66 | 59, 65 | syl 16 | . . . 4 |
67 | 55, 57, 66 | 3bitr4d 285 | . . 3 |
68 | elun 3644 | . . 3 | |
69 | 67, 68 | syl6bbr 263 | . 2 |
70 | 69 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 u. cun 3473
class class class wbr 4452 (class class class)co 6296
cr 9512 clt 9649 cle 9650 cicc 11561 |
This theorem is referenced by: cnmpt2pc 21428 volcn 22015 itgspliticc 22243 cvmliftlem10 28739 iblspltprt 31772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-pre-lttri 9587 ax-pre-lttrn 9588 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-icc 11565 |
Copyright terms: Public domain | W3C validator |