Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccssre | Unicode version |
Description: A closed real interval is a set of reals. (Contributed by FL, 6-Jun-2007.) (Proof shortened by Paul Chapman, 21-Jan-2008.) |
Ref | Expression |
---|---|
iccssre |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc2 11618 | . . . . 5 | |
2 | 1 | biimp3a 1328 | . . . 4 |
3 | 2 | simp1d 1008 | . . 3 |
4 | 3 | 3expia 1198 | . 2 |
5 | 4 | ssrdv 3509 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 e. wcel 1818 C_ wss 3475
class class class wbr 4452 (class class class)co 6296
cr 9512 cle 9650 cicc 11561 |
This theorem is referenced by: iccsupr 11646 iccsplit 11682 iccshftri 11684 iccshftli 11686 iccdili 11688 icccntri 11690 unitssre 11696 supicc 11697 supiccub 11698 supicclub 11699 icccld 21274 iccntr 21326 icccmplem2 21328 icccmplem3 21329 icccmp 21330 retopcon 21334 iccconn 21335 cnmpt2pc 21428 iihalf1cn 21432 iihalf2cn 21434 icoopnst 21439 iocopnst 21440 icchmeo 21441 xrhmeo 21446 icccvx 21450 cnheiborlem 21454 htpycc 21480 pcocn 21517 pcohtpylem 21519 pcopt 21522 pcopt2 21523 pcoass 21524 pcorevlem 21526 ivthlem2 21864 ivthlem3 21865 ivthicc 21870 evthicc 21871 ovolficcss 21881 ovolicc1 21927 ovolicc2 21933 ovolicc 21934 iccmbl 21976 ovolioo 21978 dyadss 22003 volcn 22015 volivth 22016 vitalilem2 22018 vitalilem4 22020 mbfimaicc 22040 mbfi1fseqlem4 22125 itgioo 22222 rollelem 22390 rolle 22391 cmvth 22392 mvth 22393 dvlip 22394 c1liplem1 22397 c1lip1 22398 c1lip3 22400 dvgt0lem1 22403 dvgt0lem2 22404 dvgt0 22405 dvlt0 22406 dvge0 22407 dvle 22408 dvivthlem1 22409 dvivth 22411 dvne0 22412 lhop1lem 22414 dvcvx 22421 dvfsumle 22422 dvfsumge 22423 dvfsumabs 22424 ftc1lem1 22436 ftc1a 22438 ftc1lem4 22440 ftc1lem5 22441 ftc1lem6 22442 ftc1 22443 ftc1cn 22444 ftc2 22445 ftc2ditglem 22446 ftc2ditg 22447 itgparts 22448 itgsubstlem 22449 aalioulem3 22730 reeff1olem 22841 efcvx 22844 pilem3 22848 pige3 22910 sinord 22921 recosf1o 22922 resinf1o 22923 efif1olem4 22932 asinrecl 23233 acosrecl 23234 emre 23335 pntlem3 23794 ttgcontlem1 24188 signsply0 28508 iccscon 28693 iccllyscon 28695 cvmliftlem10 28739 sin2h 30045 cos2h 30046 mblfinlem2 30052 ftc1cnnclem 30088 ftc1cnnc 30089 ftc1anclem7 30096 ftc1anc 30098 ftc2nc 30099 areacirclem2 30108 areacirclem3 30109 areacirclem4 30110 areacirc 30112 ivthALT 30153 iccbnd 30336 icccmpALT 30337 itgpowd 31182 arearect 31183 areaquad 31184 lhe4.4ex1a 31234 lefldiveq 31482 iccssred 31539 itgsin0pilem1 31748 ibliccsinexp 31749 iblioosinexp 31751 itgsinexplem1 31752 itgsinexp 31753 iblspltprt 31772 fourierdlem5 31894 fourierdlem9 31898 fourierdlem18 31907 fourierdlem24 31913 fourierdlem62 31951 fourierdlem66 31955 fourierdlem74 31963 fourierdlem75 31964 fourierdlem83 31972 fourierdlem87 31976 fourierdlem93 31982 fourierdlem95 31984 fourierdlem102 31991 fourierdlem103 31992 fourierdlem104 31993 fourierdlem112 32001 fourierdlem114 32003 sqwvfoura 32011 sqwvfourb 32012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-pre-lttri 9587 ax-pre-lttrn 9588 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-icc 11565 |
Copyright terms: Public domain | W3C validator |