Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccssxr | Unicode version |
Description: A closed interval is a set of extended reals. (Contributed by FL, 28-Jul-2008.) (Revised by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
iccssxr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-icc 11565 | . 2 | |
2 | 1 | ixxssxr 11570 | 1 |
Colors of variables: wff setvar class |
Syntax hints: C_ wss 3475 (class class class)co 6296
cxr 9648
cle 9650 cicc 11561 |
This theorem is referenced by: supicclub2 11700 lecldbas 19720 ordtresticc 19724 prdsxmetlem 20871 xrge0gsumle 21338 xrge0tsms 21339 metdscn 21360 iccpnfhmeo 21445 xrhmeo 21446 volsup 21966 volsup2 22014 volivth 22016 itg2le 22146 itg2const2 22148 itg2lea 22151 itg2eqa 22152 itg2split 22156 itg2gt0 22167 dvgt0lem1 22403 radcnvlt1 22813 radcnvle 22815 pserulm 22817 psercnlem2 22819 psercnlem1 22820 psercn 22821 pserdvlem1 22822 pserdvlem2 22823 abelthlem3 22828 abelth 22836 logtayl 23041 xrge0infss 27580 xrge0infssd 27581 xrge0base 27673 xrge00 27674 xrge0mulgnn0 27677 xrge0addass 27678 xrge0nre 27680 xrge0addgt0 27681 xrge0adddir 27682 xrge0adddi 27683 xrge0npcan 27684 xrge0omnd 27701 xrge0tsmsd 27775 xrge0slmod 27834 xrge0iifiso 27917 xrge0iifhmeo 27918 xrge0pluscn 27922 xrge0mulc1cn 27923 xrge0tmdOLD 27927 lmlimxrge0 27930 pnfneige0 27933 lmxrge0 27934 esumle 28065 esummono 28066 gsumesum 28067 esumlub 28068 esumlef 28070 esumcst 28071 esumfsup 28076 esumpinfval 28079 esumpfinvallem 28080 esumpinfsum 28083 esumpmono 28085 esummulc2 28088 esumdivc 28089 hasheuni 28091 esumcvg 28092 measun 28182 measunl 28187 measiun 28189 voliune 28201 volfiniune 28202 ddemeas 28208 omsfval 28265 oms0 28266 probmeasb 28369 mblfinlem1 30051 itg2addnclem 30066 ftc1anc 30098 eliccxr 31550 fourierdlem1 31890 fourierdlem20 31909 fourierdlem27 31916 fourierdlem87 31976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-xr 9653 df-icc 11565 |
Copyright terms: Public domain | W3C validator |