Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icoshft | Unicode version |
Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.) |
Ref | Expression |
---|---|
icoshft |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 9660 | . . . . . 6 | |
2 | elico2 11617 | . . . . . 6 | |
3 | 1, 2 | sylan2 474 | . . . . 5 |
4 | 3 | biimpd 207 | . . . 4 |
5 | 4 | 3adant3 1016 | . . 3 |
6 | 3anass 977 | . . 3 | |
7 | 5, 6 | syl6ib 226 | . 2 |
8 | leadd1 10045 | . . . . . . . . . 10 | |
9 | 8 | 3com12 1200 | . . . . . . . . 9 |
10 | 9 | 3expib 1199 | . . . . . . . 8 |
11 | 10 | com12 31 | . . . . . . 7 |
12 | 11 | 3adant2 1015 | . . . . . 6 |
13 | 12 | imp 429 | . . . . 5 |
14 | ltadd1 10044 | . . . . . . . . 9 | |
15 | 14 | 3expib 1199 | . . . . . . . 8 |
16 | 15 | com12 31 | . . . . . . 7 |
17 | 16 | 3adant1 1014 | . . . . . 6 |
18 | 17 | imp 429 | . . . . 5 |
19 | 13, 18 | anbi12d 710 | . . . 4 |
20 | 19 | pm5.32da 641 | . . 3 |
21 | readdcl 9596 | . . . . . . . 8 | |
22 | 21 | expcom 435 | . . . . . . 7 |
23 | 22 | anim1d 564 | . . . . . 6 |
24 | 3anass 977 | . . . . . 6 | |
25 | 23, 24 | syl6ibr 227 | . . . . 5 |
26 | 25 | 3ad2ant3 1019 | . . . 4 |
27 | readdcl 9596 | . . . . . 6 | |
28 | 27 | 3adant2 1015 | . . . . 5 |
29 | readdcl 9596 | . . . . . 6 | |
30 | 29 | 3adant1 1014 | . . . . 5 |
31 | rexr 9660 | . . . . . . 7 | |
32 | elico2 11617 | . . . . . . 7 | |
33 | 31, 32 | sylan2 474 | . . . . . 6 |
34 | 33 | biimprd 223 | . . . . 5 |
35 | 28, 30, 34 | syl2anc 661 | . . . 4 |
36 | 26, 35 | syld 44 | . . 3 |
37 | 20, 36 | sylbid 215 | . 2 |
38 | 7, 37 | syld 44 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 e. wcel 1818
class class class wbr 4452 (class class class)co 6296
cr 9512 caddc 9516 cxr 9648
clt 9649 cle 9650 cico 11560 |
This theorem is referenced by: icoshftf1o 11672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-ico 11564 |
Copyright terms: Public domain | W3C validator |