Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icoshftf1o | Unicode version |
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
icoshftf1o.1 |
Ref | Expression |
---|---|
icoshftf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | icoshft 11671 | . . 3 | |
2 | 1 | ralrimiv 2869 | . 2 |
3 | readdcl 9596 | . . . . . . . . 9 | |
4 | 3 | 3adant2 1015 | . . . . . . . 8 |
5 | readdcl 9596 | . . . . . . . . 9 | |
6 | 5 | 3adant1 1014 | . . . . . . . 8 |
7 | renegcl 9905 | . . . . . . . . 9 | |
8 | 7 | 3ad2ant3 1019 | . . . . . . . 8 |
9 | icoshft 11671 | . . . . . . . 8 | |
10 | 4, 6, 8, 9 | syl3anc 1228 | . . . . . . 7 |
11 | 10 | imp 429 | . . . . . 6 |
12 | 6 | rexrd 9664 | . . . . . . . . . 10 |
13 | icossre 11634 | . . . . . . . . . 10 | |
14 | 4, 12, 13 | syl2anc 661 | . . . . . . . . 9 |
15 | 14 | sselda 3503 | . . . . . . . 8 |
16 | 15 | recnd 9643 | . . . . . . 7 |
17 | simpl3 1001 | . . . . . . . 8 | |
18 | 17 | recnd 9643 | . . . . . . 7 |
19 | 16, 18 | negsubd 9960 | . . . . . 6 |
20 | 4 | recnd 9643 | . . . . . . . . . 10 |
21 | simp3 998 | . . . . . . . . . . 11 | |
22 | 21 | recnd 9643 | . . . . . . . . . 10 |
23 | 20, 22 | negsubd 9960 | . . . . . . . . 9 |
24 | simp1 996 | . . . . . . . . . . 11 | |
25 | 24 | recnd 9643 | . . . . . . . . . 10 |
26 | 25, 22 | pncand 9955 | . . . . . . . . 9 |
27 | 23, 26 | eqtrd 2498 | . . . . . . . 8 |
28 | 6 | recnd 9643 | . . . . . . . . . 10 |
29 | 28, 22 | negsubd 9960 | . . . . . . . . 9 |
30 | simp2 997 | . . . . . . . . . . 11 | |
31 | 30 | recnd 9643 | . . . . . . . . . 10 |
32 | 31, 22 | pncand 9955 | . . . . . . . . 9 |
33 | 29, 32 | eqtrd 2498 | . . . . . . . 8 |
34 | 27, 33 | oveq12d 6314 | . . . . . . 7 |
35 | 34 | adantr 465 | . . . . . 6 |
36 | 11, 19, 35 | 3eltr3d 2559 | . . . . 5 |
37 | reueq 3297 | . . . . 5 | |
38 | 36, 37 | sylib 196 | . . . 4 |
39 | 15 | adantr 465 | . . . . . . . 8 |
40 | 39 | recnd 9643 | . . . . . . 7 |
41 | simpll3 1037 | . . . . . . . 8 | |
42 | 41 | recnd 9643 | . . . . . . 7 |
43 | simpl1 999 | . . . . . . . . . 10 | |
44 | simpl2 1000 | . . . . . . . . . . 11 | |
45 | 44 | rexrd 9664 | . . . . . . . . . 10 |
46 | icossre 11634 | . . . . . . . . . 10 | |
47 | 43, 45, 46 | syl2anc 661 | . . . . . . . . 9 |
48 | 47 | sselda 3503 | . . . . . . . 8 |
49 | 48 | recnd 9643 | . . . . . . 7 |
50 | 40, 42, 49 | subadd2d 9973 | . . . . . 6 |
51 | eqcom 2466 | . . . . . 6 | |
52 | eqcom 2466 | . . . . . 6 | |
53 | 50, 51, 52 | 3bitr4g 288 | . . . . 5 |
54 | 53 | reubidva 3041 | . . . 4 |
55 | 38, 54 | mpbid 210 | . . 3 |
56 | 55 | ralrimiva 2871 | . 2 |
57 | icoshftf1o.1 | . . 3 | |
58 | 57 | f1ompt 6053 | . 2 |
59 | 2, 56, 58 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
A. wral 2807 E! wreu 2809 C_ wss 3475
e. cmpt 4510 -1-1-onto-> wf1o 5592 (class class class)co 6296
cr 9512 caddc 9516 cxr 9648
cmin 9828 -u cneg 9829 cico 11560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-ico 11564 |
Copyright terms: Public domain | W3C validator |