Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icossxr | Unicode version |
Description: A closed-below, open-above interval is a subset of the extended reals. (Contributed by FL, 29-May-2014.) (Revised by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
icossxr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 11564 | . 2 | |
2 | 1 | ixxssxr 11570 | 1 |
Colors of variables: wff setvar class |
Syntax hints: C_ wss 3475 (class class class)co 6296
cxr 9648
clt 9649 cle 9650 cico 11560 |
This theorem is referenced by: leordtvallem2 19712 leordtval2 19713 nmoffn 21218 nmofval 21221 nmogelb 21223 nmolb 21224 nmof 21226 icopnfhmeo 21443 elovolm 21886 ovolmge0 21888 ovolgelb 21891 ovollb2lem 21899 ovoliunlem1 21913 ovoliunlem2 21914 ovolscalem1 21924 ovolicc1 21927 ioombl1lem2 21969 ioombl1lem4 21971 uniioovol 21988 uniiccvol 21989 uniioombllem1 21990 uniioombllem2 21992 uniioombllem3 21994 uniioombllem6 21997 esumpfinvallem 28080 esummulc1 28087 esummulc2 28088 mblfinlem3 30053 mblfinlem4 30054 ismblfin 30055 itg2gt0cn 30070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-xr 9653 df-ico 11564 |
Copyright terms: Public domain | W3C validator |