Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idd | Unicode version |
Description: Principle of identity with antecedent. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
idd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 | |
2 | 1 | a1i 11 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: imim1d 75 simprim 150 pm2.6 170 pm2.65 172 orel2 383 pm2.621 408 simpr 461 ancld 553 ancrd 554 anim12d 563 anim1d 564 anim2d 565 pm2.63 788 orim1d 839 orim2d 840 ecase2d 940 cad0 1467 merco2 1569 spnfw 1785 r19.36v 3005 r19.44v 3014 r19.45v 3015 eqsbc3r 3389 reuss 3778 opthpr 4208 wereu2 4881 relop 5158 soxp 6913 omopth2 7252 swoord2 7360 mapdom2 7708 en3lplem2 8053 rankxplim3 8320 cfsmolem 8671 fin1a2s 8815 fpwwe2lem12 9040 fpwwe2lem13 9041 inawina 9089 gchina 9098 elnnz 10899 xmullem 11485 icossicc 11640 iocssicc 11641 ioossico 11642 ioopnfsup 11991 icopnfsup 11992 expeq0 12196 repswswrd 12756 repswcshw 12780 vdwlem6 14504 lublecllem 15618 tsrlemax 15850 ocv2ss 18704 0top 19485 neindisj2 19624 lmconst 19762 cnpresti 19789 sslm 19800 cmpfi 19908 bwthOLD 19911 dfcon2 19920 hausflim 20482 bndth 21458 nmoleub2a 21600 nmoleub2b 21601 cmetcaulem 21727 ioorf 21982 ioorinv2 21984 dgrcolem2 22671 plydiveu 22694 dvloglem 23029 lmieu 24150 axcontlem4 24270 grponnncan2 25256 dipsubdir 25763 idinside 29734 endofsegid 29735 meran1 29876 onsuct0 29906 ftc1anclem7 30096 nn0prpwlem 30140 nn0prpw 30141 fdc1 30239 rngosubdi 30356 rngosubdir 30357 mpt2bi123f 30571 ioossioc 31524 ioossioobi 31557 stoweidlem27 31809 stoweidlem31 31813 stoweidlem60 31842 atbiffatnnb 32108 3ornot23 33278 rspsbc2 33305 sbcim2g 33309 idn2 33399 idn3 33401 trsspwALT2 33617 sspwtrALT 33620 sstrALT2 33635 bj-sngltag 34541 lkreqN 34895 cdlemg33a 36432 mapdordlem2 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |