MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ideq Unicode version

Theorem ideq 5160
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
Hypothesis
Ref Expression
ideq.1
Assertion
Ref Expression
ideq

Proof of Theorem ideq
StepHypRef Expression
1 ideq.1 . 2
2 ideqg 5159 . 2
31, 2ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  =wceq 1395  e.wcel 1818   cvv 3109   class class class wbr 4452   cid 4795
This theorem is referenced by:  dmi  5222  resieq  5289  iss  5326  restidsing  5335  imai  5354  issref  5385  intasym  5387  asymref  5388  intirr  5390  poirr2  5396  cnvi  5415  xpdifid  5440  coi1  5528  dffv2  5946  resiexg  6736  idssen  7580  dflt2  11383  opsrtoslem2  18149  hausdiag  20146  hauseqlcld  20147  metustidOLD  21062  metustid  21063  ltgov  23983  ex-id  25155  relexpindlem  29062  dfso2  29183  dfpo2  29184  idsset  29540  dfon3  29542  elfix  29553  dffix2  29555  sscoid  29563  dffun10  29564  elfuns  29565  brsingle  29567  brapply  29588  brsuccf  29591  dfrdg4  29600  ipo0  31358  ifr0  31359  fourierdlem42  31931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-id 4800  df-xp 5010  df-rel 5011
  Copyright terms: Public domain W3C validator