Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ideqg | Unicode version |
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ideqg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5135 | . . . . 5 | |
2 | 1 | brrelexi 5045 | . . . 4 |
3 | 2 | adantl 466 | . . 3 |
4 | simpl 457 | . . 3 | |
5 | 3, 4 | jca 532 | . 2 |
6 | eleq1 2529 | . . . . 5 | |
7 | 6 | biimparc 487 | . . . 4 |
8 | elex 3118 | . . . 4 | |
9 | 7, 8 | syl 16 | . . 3 |
10 | simpl 457 | . . 3 | |
11 | 9, 10 | jca 532 | . 2 |
12 | eqeq1 2461 | . . 3 | |
13 | eqeq2 2472 | . . 3 | |
14 | df-id 4800 | . . 3 | |
15 | 12, 13, 14 | brabg 4771 | . 2 |
16 | 5, 11, 15 | pm5.21nd 900 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
class class class wbr 4452 cid 4795 |
This theorem is referenced by: ideq 5160 ididg 5161 restidsing 5335 poleloe 5406 pltval 15590 tglngne 23937 tgelrnln 24010 opeldifid 27456 fourierdlem42 31931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 |
Copyright terms: Public domain | W3C validator |