MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifbieq2i Unicode version

Theorem ifbieq2i 3965
Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2i.1
ifbieq2i.2
Assertion
Ref Expression
ifbieq2i

Proof of Theorem ifbieq2i
StepHypRef Expression
1 ifbieq2i.1 . . 3
2 ifbi 3962 . . 3
31, 2ax-mp 5 . 2
4 ifbieq2i.2 . . 3
5 ifeq2 3946 . . 3
64, 5ax-mp 5 . 2
73, 6eqtri 2486 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  =wceq 1395  ifcif 3941
This theorem is referenced by:  ifbieq12i  3967  gcdcom  14158  gcdass  14183  lcmcom  31199  lcmass  31218  bj-xpimasn  34512  cdleme31sdnN  36113  cdlemefr44  36151  cdleme48fv  36225  cdlemeg49lebilem  36265  cdleme50eq  36267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-un 3480  df-if 3942
  Copyright terms: Public domain W3C validator