Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifboth | Unicode version |
Description: A wff containing a conditional operator is true when both of its cases are true. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 15-Feb-2015.) |
Ref | Expression |
---|---|
ifboth.1 | |
ifboth.2 |
Ref | Expression |
---|---|
ifboth |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifboth.1 | . 2 | |
2 | ifboth.2 | . 2 | |
3 | simpll 753 | . 2 | |
4 | simplr 755 | . 2 | |
5 | 1, 2, 3, 4 | ifbothda 3976 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
if cif 3941 |
This theorem is referenced by: ifcl 3983 keephyp 4006 soltmin 5411 xrmaxlt 11411 xrltmin 11412 xrmaxle 11413 xrlemin 11414 ifle 11425 expmulnbnd 12298 limsupgre 13304 isumless 13657 cvgrat 13692 rpnnen2lem4 13951 ruclem2 13965 sadcaddlem 14107 sadadd3 14111 pcmptdvds 14413 prmreclem5 14438 prmreclem6 14439 pnfnei 19721 mnfnei 19722 xkopt 20156 xmetrtri2 20859 stdbdxmet 21018 stdbdmet 21019 stdbdmopn 21021 xrsxmet 21314 icccmplem2 21328 metdscn 21360 metnrmlem1a 21362 ivthlem2 21864 ovolicc2lem5 21932 ioombl1lem1 21968 ioombl1lem4 21971 ismbfd 22047 mbfi1fseqlem4 22125 mbfi1fseqlem5 22126 itg2const 22147 itg2const2 22148 itg2monolem3 22159 itg2gt0 22167 itg2cnlem1 22168 itg2cnlem2 22169 iblss 22211 itgless 22223 ibladdlem 22226 iblabsr 22236 iblmulc2 22237 dvferm1lem 22385 dvferm2lem 22387 dvlip2 22396 dgradd2 22665 plydiveu 22694 chtppilim 23660 dchrvmasumiflem1 23686 ostth3 23823 mblfinlem2 30052 itg2addnclem 30066 itg2addnc 30069 itg2gt0cn 30070 ibladdnclem 30071 iblmulc2nc 30080 bddiblnc 30085 ftc1anclem5 30094 ftc1anclem8 30097 ftc1anc 30098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-if 3942 |
Copyright terms: Public domain | W3C validator |