Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifel | Unicode version |
Description: Membership of a conditional operator. (Contributed by NM, 10-Sep-2005.) |
Ref | Expression |
---|---|
ifel |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2529 | . 2 | |
2 | eleq1 2529 | . 2 | |
3 | 1, 2 | elimif 3975 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
\/ wo 368 /\ wa 369 e. wcel 1818
if cif 3941 |
This theorem is referenced by: clwlkisclwwlklem2a 24785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-if 3942 |
Copyright terms: Public domain | W3C validator |