Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq1 | Unicode version |
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
ifeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3103 | . . 3 | |
2 | 1 | uneq1d 3656 | . 2 |
3 | dfif6 3944 | . 2 | |
4 | dfif6 3944 | . 2 | |
5 | 2, 3, 4 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 { crab 2811 u. cun 3473
if cif 3941 |
This theorem is referenced by: ifeq12 3958 ifeq1d 3959 ifbieq12i 3967 ifexg 4011 rdgeq2 7097 dfoi 7957 wemaplem2 7993 cantnflem1 8129 cantnflem1OLD 8152 prodeq2w 13719 prodeq2ii 13720 mgm2nsgrplem2 16037 mgm2nsgrplem3 16038 mplcoe3 18128 mplcoe3OLD 18129 marrepval0 19063 ellimc 22277 ply1nzb 22523 dchrvmasumiflem1 23686 signspval 28509 dfrdg2 29228 dfafv2 32217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rab 2816 df-v 3111 df-un 3480 df-if 3942 |
Copyright terms: Public domain | W3C validator |