Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq2 | Unicode version |
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
ifeq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3103 | . . 3 | |
2 | 1 | uneq2d 3657 | . 2 |
3 | dfif6 3944 | . 2 | |
4 | dfif6 3944 | . 2 | |
5 | 2, 3, 4 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 { crab 2811 u. cun 3473
if cif 3941 |
This theorem is referenced by: ifeq12 3958 ifeq2d 3960 ifbieq2i 3965 ifexg 4011 somincom 5409 mdetunilem9 19122 prmorcht 23452 pclogsum 23490 ftc1anclem6 30095 ftc1anclem8 30097 ftc1anc 30098 hdmap1cbv 37530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-rab 2816 df-v 3111 df-un 3480 df-if 3942 |
Copyright terms: Public domain | W3C validator |