MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpr Unicode version

Theorem ifpr 4077
Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.)
Assertion
Ref Expression
ifpr

Proof of Theorem ifpr
StepHypRef Expression
1 elex 3118 . 2
2 elex 3118 . 2
3 ifcl 3983 . . 3
4 ifeqor 3985 . . . 4
5 elprg 4045 . . . 4
64, 5mpbiri 233 . . 3
73, 6syl 16 . 2
81, 2, 7syl2an 477 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  \/wo 368  /\wa 369  =wceq 1395  e.wcel 1818   cvv 3109  ifcif 3941  {cpr 4031
This theorem is referenced by:  suppr  7950  uvcvvcl  18818  indf  28029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-if 3942  df-sn 4030  df-pr 4032
  Copyright terms: Public domain W3C validator