Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifsb | Unicode version |
Description: Distribute a function over an if-clause. (Contributed by Mario Carneiro, 14-Aug-2013.) |
Ref | Expression |
---|---|
ifsb.1 | |
ifsb.2 |
Ref | Expression |
---|---|
ifsb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3947 | . . . 4 | |
2 | ifsb.1 | . . . 4 | |
3 | 1, 2 | syl 16 | . . 3 |
4 | iftrue 3947 | . . 3 | |
5 | 3, 4 | eqtr4d 2501 | . 2 |
6 | iffalse 3950 | . . . 4 | |
7 | ifsb.2 | . . . 4 | |
8 | 6, 7 | syl 16 | . . 3 |
9 | iffalse 3950 | . . 3 | |
10 | 8, 9 | eqtr4d 2501 | . 2 |
11 | 5, 10 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 if cif 3941 |
This theorem is referenced by: fvif 5882 iffv 5883 ovif 6379 ovif2 6380 ifov 6382 xmulneg1 11490 efrlim 23299 lgsneg 23594 lgsdilem 23597 rpvmasum2 23697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-if 3942 |
Copyright terms: Public domain | W3C validator |