Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iin0 | Unicode version |
Description: An indexed intersection of the empty set, with a nonempty index set, is empty. (Contributed by NM, 20-Oct-2005.) |
Ref | Expression |
---|---|
iin0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinconst 4340 | . 2 | |
2 | 0ex 4582 | . . . . . 6 | |
3 | n0i 3789 | . . . . . 6 | |
4 | 2, 3 | ax-mp 5 | . . . . 5 |
5 | 0iin 4388 | . . . . . 6 | |
6 | 5 | eqeq1i 2464 | . . . . 5 |
7 | 4, 6 | mtbir 299 | . . . 4 |
8 | iineq1 4345 | . . . . 5 | |
9 | 8 | eqeq1d 2459 | . . . 4 |
10 | 7, 9 | mtbiri 303 | . . 3 |
11 | 10 | necon2ai 2692 | . 2 |
12 | 1, 11 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
= wceq 1395 e. wcel 1818 =/= wne 2652
cvv 3109
c0 3784 |^|_ ciin 4331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-nul 4581 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-v 3111 df-dif 3478 df-nul 3785 df-iin 4333 |
Copyright terms: Public domain | W3C validator |