Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinab | Unicode version |
Description: Indexed intersection of a class builder. (Contributed by NM, 6-Dec-2011.) |
Ref | Expression |
---|---|
iinab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2619 | . . . 4 | |
2 | nfab1 2621 | . . . 4 | |
3 | 1, 2 | nfiin 4359 | . . 3 |
4 | nfab1 2621 | . . 3 | |
5 | 3, 4 | cleqf 2646 | . 2 |
6 | abid 2444 | . . . 4 | |
7 | 6 | ralbii 2888 | . . 3 |
8 | vex 3112 | . . . 4 | |
9 | eliin 4336 | . . . 4 | |
10 | 8, 9 | ax-mp 5 | . . 3 |
11 | abid 2444 | . . 3 | |
12 | 7, 10, 11 | 3bitr4i 277 | . 2 |
13 | 5, 12 | mpgbir 1622 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 = wceq 1395
e. wcel 1818 { cab 2442 A. wral 2807
cvv 3109
|^|_ ciin 4331 |
This theorem is referenced by: iinrab 4392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-iin 4333 |
Copyright terms: Public domain | W3C validator |