Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iindif2 | Unicode version |
Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in [Enderton] p. 31. Use uniiun 4383 to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
iindif2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.28zv 3924 | . . . 4 | |
2 | eldif 3485 | . . . . . 6 | |
3 | 2 | bicomi 202 | . . . . 5 |
4 | 3 | ralbii 2888 | . . . 4 |
5 | ralnex 2903 | . . . . . 6 | |
6 | eliun 4335 | . . . . . 6 | |
7 | 5, 6 | xchbinxr 311 | . . . . 5 |
8 | 7 | anbi2i 694 | . . . 4 |
9 | 1, 4, 8 | 3bitr3g 287 | . . 3 |
10 | vex 3112 | . . . 4 | |
11 | eliin 4336 | . . . 4 | |
12 | 10, 11 | ax-mp 5 | . . 3 |
13 | eldif 3485 | . . 3 | |
14 | 9, 12, 13 | 3bitr4g 288 | . 2 |
15 | 14 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
E. wrex 2808 cvv 3109
\ cdif 3472 c0 3784 U_ ciun 4330 |^|_ ciin 4331 |
This theorem is referenced by: iinvdif 4402 iincld 19540 clsval2 19551 mretopd 19593 hauscmplem 19906 cmpfi 19908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-dif 3478 df-nul 3785 df-iun 4332 df-iin 4333 |
Copyright terms: Public domain | W3C validator |