Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iineq2 | Unicode version |
Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iineq2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2530 | . . . . 5 | |
2 | 1 | ralimi 2850 | . . . 4 |
3 | ralbi 2988 | . . . 4 | |
4 | 2, 3 | syl 16 | . . 3 |
5 | 4 | abbidv 2593 | . 2 |
6 | df-iin 4333 | . 2 | |
7 | df-iin 4333 | . 2 | |
8 | 5, 6, 7 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 { cab 2442
A. wral 2807 |^|_ ciin 4331 |
This theorem is referenced by: iineq2i 4350 iineq2d 4351 firest 14830 iincld 19540 elrfirn2 30628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-ral 2812 df-iin 4333 |
Copyright terms: Public domain | W3C validator |