Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iiner | Unicode version |
Description: The intersection of a nonempty family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
iiner |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.2z 3918 | . . . 4 | |
2 | errel 7339 | . . . . . 6 | |
3 | df-rel 5011 | . . . . . 6 | |
4 | 2, 3 | sylib 196 | . . . . 5 |
5 | 4 | reximi 2925 | . . . 4 |
6 | iinss 4381 | . . . 4 | |
7 | 1, 5, 6 | 3syl 20 | . . 3 |
8 | df-rel 5011 | . . 3 | |
9 | 7, 8 | sylibr 212 | . 2 |
10 | id 22 | . . . . . . . . 9 | |
11 | 10 | ersymb 7344 | . . . . . . . 8 |
12 | 11 | biimpd 207 | . . . . . . 7 |
13 | df-br 4453 | . . . . . . 7 | |
14 | df-br 4453 | . . . . . . 7 | |
15 | 12, 13, 14 | 3imtr3g 269 | . . . . . 6 |
16 | 15 | ral2imi 2845 | . . . . 5 |
17 | 16 | adantl 466 | . . . 4 |
18 | df-br 4453 | . . . . 5 | |
19 | opex 4716 | . . . . . 6 | |
20 | eliin 4336 | . . . . . 6 | |
21 | 19, 20 | ax-mp 5 | . . . . 5 |
22 | 18, 21 | bitri 249 | . . . 4 |
23 | df-br 4453 | . . . . 5 | |
24 | opex 4716 | . . . . . 6 | |
25 | eliin 4336 | . . . . . 6 | |
26 | 24, 25 | ax-mp 5 | . . . . 5 |
27 | 23, 26 | bitri 249 | . . . 4 |
28 | 17, 22, 27 | 3imtr4g 270 | . . 3 |
29 | 28 | imp 429 | . 2 |
30 | r19.26 2984 | . . . . 5 | |
31 | 10 | ertr 7345 | . . . . . . . 8 |
32 | df-br 4453 | . . . . . . . . 9 | |
33 | 13, 32 | anbi12i 697 | . . . . . . . 8 |
34 | df-br 4453 | . . . . . . . 8 | |
35 | 31, 33, 34 | 3imtr3g 269 | . . . . . . 7 |
36 | 35 | ral2imi 2845 | . . . . . 6 |
37 | 36 | adantl 466 | . . . . 5 |
38 | 30, 37 | syl5bir 218 | . . . 4 |
39 | df-br 4453 | . . . . . 6 | |
40 | opex 4716 | . . . . . . 7 | |
41 | eliin 4336 | . . . . . . 7 | |
42 | 40, 41 | ax-mp 5 | . . . . . 6 |
43 | 39, 42 | bitri 249 | . . . . 5 |
44 | 22, 43 | anbi12i 697 | . . . 4 |
45 | df-br 4453 | . . . . 5 | |
46 | opex 4716 | . . . . . 6 | |
47 | eliin 4336 | . . . . . 6 | |
48 | 46, 47 | ax-mp 5 | . . . . 5 |
49 | 45, 48 | bitri 249 | . . . 4 |
50 | 38, 44, 49 | 3imtr4g 270 | . . 3 |
51 | 50 | imp 429 | . 2 |
52 | simpl 457 | . . . . . . . . . 10 | |
53 | simpr 461 | . . . . . . . . . 10 | |
54 | 52, 53 | erref 7350 | . . . . . . . . 9 |
55 | df-br 4453 | . . . . . . . . 9 | |
56 | 54, 55 | sylib 196 | . . . . . . . 8 |
57 | 56 | expcom 435 | . . . . . . 7 |
58 | 57 | ralimdv 2867 | . . . . . 6 |
59 | 58 | com12 31 | . . . . 5 |
60 | 59 | adantl 466 | . . . 4 |
61 | r19.26 2984 | . . . . . 6 | |
62 | r19.2z 3918 | . . . . . . . 8 | |
63 | vex 3112 | . . . . . . . . . . 11 | |
64 | 63, 63 | opeldm 5211 | . . . . . . . . . 10 |
65 | erdm 7340 | . . . . . . . . . . . 12 | |
66 | 65 | eleq2d 2527 | . . . . . . . . . . 11 |
67 | 66 | biimpa 484 | . . . . . . . . . 10 |
68 | 64, 67 | sylan2 474 | . . . . . . . . 9 |
69 | 68 | rexlimivw 2946 | . . . . . . . 8 |
70 | 62, 69 | syl 16 | . . . . . . 7 |
71 | 70 | ex 434 | . . . . . 6 |
72 | 61, 71 | syl5bir 218 | . . . . 5 |
73 | 72 | expdimp 437 | . . . 4 |
74 | 60, 73 | impbid 191 | . . 3 |
75 | df-br 4453 | . . . 4 | |
76 | opex 4716 | . . . . 5 | |
77 | eliin 4336 | . . . . 5 | |
78 | 76, 77 | ax-mp 5 | . . . 4 |
79 | 75, 78 | bitri 249 | . . 3 |
80 | 74, 79 | syl6bbr 263 | . 2 |
81 | 9, 29, 51, 80 | iserd 7356 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 cvv 3109
C_ wss 3475 c0 3784 <. cop 4035 |^|_ ciin 4331
class class class wbr 4452 X. cxp 5002
dom cdm 5004 Rel wrel 5009 Er wer 7327 |
This theorem is referenced by: riiner 7403 efger 16736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-iin 4333 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-er 7330 |
Copyright terms: Public domain | W3C validator |