Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinin1 | Unicode version |
Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4384 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
iinin1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinin2 4400 | . 2 | |
2 | incom 3690 | . . . 4 | |
3 | 2 | a1i 11 | . . 3 |
4 | 3 | iineq2i 4350 | . 2 |
5 | incom 3690 | . 2 | |
6 | 1, 4, 5 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 = wceq 1395
e. wcel 1818 =/= wne 2652 i^i cin 3474
c0 3784 |^|_ ciin 4331 |
This theorem is referenced by: firest 14830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-v 3111 df-dif 3478 df-in 3482 df-nul 3785 df-iin 4333 |
Copyright terms: Public domain | W3C validator |