MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinin1 Unicode version

Theorem iinin1 4401
Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4384 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
iinin1
Distinct variable groups:   ,   ,

Proof of Theorem iinin1
StepHypRef Expression
1 iinin2 4400 . 2
2 incom 3690 . . . 4
32a1i 11 . . 3
43iineq2i 4350 . 2
5 incom 3690 . 2
61, 4, 53eqtr4g 2523 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  e.wcel 1818  =/=wne 2652  i^icin 3474   c0 3784  |^|_ciin 4331
This theorem is referenced by:  firest  14830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-v 3111  df-dif 3478  df-in 3482  df-nul 3785  df-iin 4333
  Copyright terms: Public domain W3C validator