Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinin2 | Unicode version |
Description: Indexed intersection of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4384 to recover Enderton's theorem. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
iinin2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.28zv 3924 | . . . 4 | |
2 | elin 3686 | . . . . 5 | |
3 | 2 | ralbii 2888 | . . . 4 |
4 | vex 3112 | . . . . . 6 | |
5 | eliin 4336 | . . . . . 6 | |
6 | 4, 5 | ax-mp 5 | . . . . 5 |
7 | 6 | anbi2i 694 | . . . 4 |
8 | 1, 3, 7 | 3bitr4g 288 | . . 3 |
9 | eliin 4336 | . . . 4 | |
10 | 4, 9 | ax-mp 5 | . . 3 |
11 | elin 3686 | . . 3 | |
12 | 8, 10, 11 | 3bitr4g 288 | . 2 |
13 | 12 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 cvv 3109
i^i cin 3474 c0 3784 |^|_ ciin 4331 |
This theorem is referenced by: iinin1 4401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-v 3111 df-dif 3478 df-in 3482 df-nul 3785 df-iin 4333 |
Copyright terms: Public domain | W3C validator |