Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinon | Unicode version |
Description: The nonempty indexed
intersection of a class of ordinal numbers
( x ) is an ordinal
number. (Contributed by NM, 13-Oct-2003.)
(Proof shortened by Mario Carneiro,
5-Dec-2016.) |
Ref | Expression |
---|---|
iinon |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin3g 5261 | . . 3 | |
2 | 1 | adantr 465 | . 2 |
3 | eqid 2457 | . . . . 5 | |
4 | 3 | rnmptss 6060 | . . . 4 |
5 | 4 | adantr 465 | . . 3 |
6 | dm0rn0 5224 | . . . . . 6 | |
7 | dmmptg 5509 | . . . . . . 7 | |
8 | 7 | eqeq1d 2459 | . . . . . 6 |
9 | 6, 8 | syl5bbr 259 | . . . . 5 |
10 | 9 | necon3bid 2715 | . . . 4 |
11 | 10 | biimpar 485 | . . 3 |
12 | oninton 6635 | . . 3 | |
13 | 5, 11, 12 | syl2anc 661 | . 2 |
14 | 2, 13 | eqeltrd 2545 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 C_ wss 3475 c0 3784 |^| cint 4286 |^|_ ciin 4331
e. cmpt 4510 con0 4883 dom cdm 5004 ran crn 5005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iin 4333 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 |
Copyright terms: Public domain | W3C validator |