Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinpreima | Unicode version |
Description: Preimage of an intersection. (Contributed by FL, 16-Apr-2012.) |
Ref | Expression |
---|---|
iinpreima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 753 | . . . . 5 | |
2 | cnvimass 5362 | . . . . . . 7 | |
3 | 2 | sseli 3499 | . . . . . 6 |
4 | 3 | adantl 466 | . . . . 5 |
5 | fvex 5881 | . . . . . 6 | |
6 | fvimacnvi 6001 | . . . . . . 7 | |
7 | 6 | adantlr 714 | . . . . . 6 |
8 | eliin 4336 | . . . . . . 7 | |
9 | 8 | biimpa 484 | . . . . . 6 |
10 | 5, 7, 9 | sylancr 663 | . . . . 5 |
11 | fvimacnv 6002 | . . . . . . 7 | |
12 | 11 | ralbidv 2896 | . . . . . 6 |
13 | 12 | biimpa 484 | . . . . 5 |
14 | 1, 4, 10, 13 | syl21anc 1227 | . . . 4 |
15 | vex 3112 | . . . . 5 | |
16 | eliin 4336 | . . . . 5 | |
17 | 15, 16 | ax-mp 5 | . . . 4 |
18 | 14, 17 | sylibr 212 | . . 3 |
19 | simpll 753 | . . . . . 6 | |
20 | 16 | biimpd 207 | . . . . . . . 8 |
21 | 15, 20 | ax-mp 5 | . . . . . . 7 |
22 | 21 | adantl 466 | . . . . . 6 |
23 | fvimacnvi 6001 | . . . . . . . 8 | |
24 | 23 | ex 434 | . . . . . . 7 |
25 | 24 | ralimdv 2867 | . . . . . 6 |
26 | 19, 22, 25 | sylc 60 | . . . . 5 |
27 | 5, 8 | ax-mp 5 | . . . . 5 |
28 | 26, 27 | sylibr 212 | . . . 4 |
29 | r19.2zb 3919 | . . . . . . . . . 10 | |
30 | 29 | biimpi 194 | . . . . . . . . 9 |
31 | cnvimass 5362 | . . . . . . . . . . 11 | |
32 | 31 | sseli 3499 | . . . . . . . . . 10 |
33 | 32 | rexlimivw 2946 | . . . . . . . . 9 |
34 | 30, 33 | syl6 33 | . . . . . . . 8 |
35 | 17, 34 | syl5bi 217 | . . . . . . 7 |
36 | 35 | adantl 466 | . . . . . 6 |
37 | 36 | imp 429 | . . . . 5 |
38 | fvimacnv 6002 | . . . . 5 | |
39 | 19, 37, 38 | syl2anc 661 | . . . 4 |
40 | 28, 39 | mpbid 210 | . . 3 |
41 | 18, 40 | impbida 832 | . 2 |
42 | 41 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 E. wrex 2808
cvv 3109
c0 3784 |^|_ ciin 4331 `' ccnv 5003
dom cdm 5004 " cima 5007 Fun wfun 5587
` cfv 5593 |
This theorem is referenced by: intpreima 6018 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iin 4333 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |