MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinrab Unicode version

Theorem iinrab 4392
Description: Indexed intersection of a restricted class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab
Distinct variable groups:   , ,   ,

Proof of Theorem iinrab
StepHypRef Expression
1 r19.28zv 3924 . . 3
21abbidv 2593 . 2
3 df-rab 2816 . . . . 5
43a1i 11 . . . 4
54iineq2i 4350 . . 3
6 iinab 4391 . . 3
75, 6eqtri 2486 . 2
8 df-rab 2816 . 2
92, 7, 83eqtr4g 2523 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818  {cab 2442  =/=wne 2652  A.wral 2807  {crab 2811   c0 3784  |^|_ciin 4331
This theorem is referenced by:  iinrab2  4393  riinrab  4406  ubthlem1  25786  pmapglbx  35493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rab 2816  df-v 3111  df-dif 3478  df-nul 3785  df-iin 4333
  Copyright terms: Public domain W3C validator