MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinss1 Unicode version

Theorem iinss1 4343
Description: Subclass theorem for indexed intersection. (Contributed by NM, 24-Jan-2012.)
Assertion
Ref Expression
iinss1
Distinct variable groups:   ,   ,

Proof of Theorem iinss1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssralv 3563 . . 3
2 vex 3112 . . . 4
3 eliin 4336 . . . 4
42, 3ax-mp 5 . . 3
5 eliin 4336 . . . 4
62, 5ax-mp 5 . . 3
71, 4, 63imtr4g 270 . 2
87ssrdv 3509 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  e.wcel 1818  A.wral 2807   cvv 3109  C_wss 3475  |^|_ciin 4331
This theorem is referenced by:  polcon3N  35641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-in 3482  df-ss 3489  df-iin 4333
  Copyright terms: Public domain W3C validator