Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinun2 | Unicode version |
Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4384 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.) |
Ref | Expression |
---|---|
iinun2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32v 3003 | . . . 4 | |
2 | elun 3644 | . . . . 5 | |
3 | 2 | ralbii 2888 | . . . 4 |
4 | vex 3112 | . . . . . 6 | |
5 | eliin 4336 | . . . . . 6 | |
6 | 4, 5 | ax-mp 5 | . . . . 5 |
7 | 6 | orbi2i 519 | . . . 4 |
8 | 1, 3, 7 | 3bitr4i 277 | . . 3 |
9 | eliin 4336 | . . . 4 | |
10 | 4, 9 | ax-mp 5 | . . 3 |
11 | elun 3644 | . . 3 | |
12 | 8, 10, 11 | 3bitr4i 277 | . 2 |
13 | 12 | eqriv 2453 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 \/ wo 368
= wceq 1395 e. wcel 1818 A. wral 2807
cvv 3109
u. cun 3473 |^|_ ciin 4331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-un 3480 df-iin 4333 |
Copyright terms: Public domain | W3C validator |