MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinun2 Unicode version

Theorem iinun2 4396
Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4384 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
iinun2
Distinct variable group:   ,

Proof of Theorem iinun2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 r19.32v 3003 . . . 4
2 elun 3644 . . . . 5
32ralbii 2888 . . . 4
4 vex 3112 . . . . . 6
5 eliin 4336 . . . . . 6
64, 5ax-mp 5 . . . . 5
76orbi2i 519 . . . 4
81, 3, 73bitr4i 277 . . 3
9 eliin 4336 . . . 4
104, 9ax-mp 5 . . 3
11 elun 3644 . . 3
128, 10, 113bitr4i 277 . 2
1312eqriv 2453 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  \/wo 368  =wceq 1395  e.wcel 1818  A.wral 2807   cvv 3109  u.cun 3473  |^|_ciin 4331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-un 3480  df-iin 4333
  Copyright terms: Public domain W3C validator