Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinuni | Unicode version |
Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iinuni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32v 3003 | . . . 4 | |
2 | elun 3644 | . . . . 5 | |
3 | 2 | ralbii 2888 | . . . 4 |
4 | vex 3112 | . . . . . 6 | |
5 | 4 | elint2 4293 | . . . . 5 |
6 | 5 | orbi2i 519 | . . . 4 |
7 | 1, 3, 6 | 3bitr4ri 278 | . . 3 |
8 | 7 | abbii 2591 | . 2 |
9 | df-un 3480 | . 2 | |
10 | df-iin 4333 | . 2 | |
11 | 8, 9, 10 | 3eqtr4i 2496 | 1 |
Colors of variables: wff setvar class |
Syntax hints: \/ wo 368 = wceq 1395
e. wcel 1818 { cab 2442 A. wral 2807
u. cun 3473 |^| cint 4286 |^|_ ciin 4331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-un 3480 df-int 4287 df-iin 4333 |
Copyright terms: Public domain | W3C validator |