MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinuni Unicode version

Theorem iinuni 4414
Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iinuni
Distinct variable groups:   ,   ,

Proof of Theorem iinuni
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 r19.32v 3003 . . . 4
2 elun 3644 . . . . 5
32ralbii 2888 . . . 4
4 vex 3112 . . . . . 6
54elint2 4293 . . . . 5
65orbi2i 519 . . . 4
71, 3, 63bitr4ri 278 . . 3
87abbii 2591 . 2
9 df-un 3480 . 2
10 df-iin 4333 . 2
118, 9, 103eqtr4i 2496 1
Colors of variables: wff setvar class
Syntax hints:  \/wo 368  =wceq 1395  e.wcel 1818  {cab 2442  A.wral 2807  u.cun 3473  |^|cint 4286  |^|_ciin 4331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-un 3480  df-int 4287  df-iin 4333
  Copyright terms: Public domain W3C validator