Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinvdif | Unicode version |
Description: The indexed intersection of a complement. (Contributed by GĂ©rard Lang, 5-Aug-2018.) |
Ref | Expression |
---|---|
iinvdif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dif0 3898 | . . . 4 | |
2 | 0iun 4387 | . . . . 5 | |
3 | 2 | difeq2i 3618 | . . . 4 |
4 | 0iin 4388 | . . . 4 | |
5 | 1, 3, 4 | 3eqtr4ri 2497 | . . 3 |
6 | iineq1 4345 | . . 3 | |
7 | iuneq1 4344 | . . . 4 | |
8 | 7 | difeq2d 3621 | . . 3 |
9 | 5, 6, 8 | 3eqtr4a 2524 | . 2 |
10 | iindif2 4399 | . 2 | |
11 | 9, 10 | pm2.61ine 2770 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 cvv 3109
\ cdif 3472 c0 3784 U_ ciun 4330 |^|_ ciin 4331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-iun 4332 df-iin 4333 |
Copyright terms: Public domain | W3C validator |