MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinvdif Unicode version

Theorem iinvdif 4402
Description: The indexed intersection of a complement. (Contributed by GĂ©rard Lang, 5-Aug-2018.)
Assertion
Ref Expression
iinvdif
Distinct variable group:   ,

Proof of Theorem iinvdif
StepHypRef Expression
1 dif0 3898 . . . 4
2 0iun 4387 . . . . 5
32difeq2i 3618 . . . 4
4 0iin 4388 . . . 4
51, 3, 43eqtr4ri 2497 . . 3
6 iineq1 4345 . . 3
7 iuneq1 4344 . . . 4
87difeq2d 3621 . . 3
95, 6, 83eqtr4a 2524 . 2
10 iindif2 4399 . 2
119, 10pm2.61ine 2770 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395   cvv 3109  \cdif 3472   c0 3784  U_ciun 4330  |^|_ciin 4331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-in 3482  df-ss 3489  df-nul 3785  df-iun 4332  df-iin 4333
  Copyright terms: Public domain W3C validator