MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinxprg Unicode version

Theorem iinxprg 4408
Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
iinxprg.1
iinxprg.2
Assertion
Ref Expression
iinxprg
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem iinxprg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 iinxprg.1 . . . . 5
21eleq2d 2527 . . . 4
3 iinxprg.2 . . . . 5
43eleq2d 2527 . . . 4
52, 4ralprg 4078 . . 3
65abbidv 2593 . 2
7 df-iin 4333 . 2
8 df-in 3482 . 2
96, 7, 83eqtr4g 2523 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818  {cab 2442  A.wral 2807  i^icin 3474  {cpr 4031  |^|_ciin 4331
This theorem is referenced by:  pmapmeet  35497  diameetN  36783  dihmeetlem2N  37026  dihmeetcN  37029  dihmeet  37070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-sbc 3328  df-un 3480  df-in 3482  df-sn 4030  df-pr 4032  df-iin 4333
  Copyright terms: Public domain W3C validator